Targets of the StBEL5 Transcription Factor Include the FT Ortholog StSP6A.

نویسندگان

  • Pooja Sharma
  • Tian Lin
  • David J Hannapel
چکیده

The BEL1-like family of transcription factors is ubiquitous in plants and plays important roles in regulating development. They function in tandem with KNOTTED1 types to bind to a double TTGAC motif in the upstream sequence of target genes. StBEL5 of potato (Solanum tuberosum) functions as a mobile RNA signal that is transcribed in leaves, moves down into stolons in response to short days, and induces tuber formation. Despite their importance, however, very little is known about the targets of BEL1-like transcription factors. To better understand this network, we made use of a phloem-mobile BEL5 induction model, an ethanol-inducible system coupled with RNA sequencing analysis, and a screen for tandem TTGAC cis-elements in the upstream sequence to catalog StBEL5 target genes. Induction of StBEL5 activated several genes that are also induced by StSP6A (S. tuberosum SELF-PRUNING 6A), a FLOWERING LOCUS T coregulator that functions as a signal for tuberization. Both enhancement and suppression of StBEL5 expression were also closely linked to StSP6A transcriptional activity. Site mutagenesis in tandem TTGAC motifs located in the upstream sequence of StSP6A suppressed the short day-induced activity of its promoter in both young tubers and leaves. The expression profile of StBEL5 induced in stolons from plants grown under long-day conditions revealed almost 10,000 differentially expressed genes, including important tuber marker genes and genes involved in cell growth, transcription, floral development, and hormone metabolism. In a random screen of 200 differentially expressed targets of StBEL5, 92% contained tandem TTGAC motifs in the upstream sequence within 3 kb of the transcription start site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A critical appraisal of phloem-mobile signals involved in tuber induction

The identification of FLOWERING LOCUS T (FT) and several FT homologs as phloem-mobile proteins that regulate flowering has sparked the search for additional homologs involved in the long-distance regulation of other developmental processes. Given that flowering and tuber induction share regulatory pathways, the quest for long-distance tuberization signals has been further stimulated. Several tu...

متن کامل

The Multiple Signals That Control Tuber Formation1[OPEN]

Under optimum environmental conditions, tuberization in potato (Solanum tuberosum) is activated by signals that either function in the leaf or arise in this organ and move down into stolon tips to induce tuber formation. Three major signals have been identified: CYCLING DOF FACTOR1 (StCDF1) for earliness and StBEL5 mRNA and SELF-PRUNING6A (StSP6A) protein as mobile signals originating in the le...

متن کامل

Potato StCONSTANS-like1 Suppresses Storage Organ Formation by Directly Activating the FT-like StSP5G Repressor

The CONSTANS-FT pathway defines a core module for reproductive transition in both long-day (LD) and short-day (SD) plants. Changes in the transcriptional function of the CONSTANS (CO) protein have been proposed to mediate differential SD activation of FLOWERING LOCUS T (FT) orthologs in SD plants. Potato Andigena genotypes have an obligate SD requirement for tuber formation, and this photoperio...

متن کامل

The Impact of the Long-Distance Transport of a BEL1-Like Messenger RNA on Development1[W][OA]

BEL1and KNOTTED1-type proteins are transcription factors from the three-amino-loop-extension superclass that interact in a tandem complex to regulate the expression of target genes. In potato (Solanum tuberosum), StBEL5 and its Knox protein partner regulate tuberization by targeting genes that control growth. RNAmovement assays demonstrated that StBEL5 transcripts move through the phloem to sto...

متن کامل

A Tree Ortholog of APETALA1 Mediates Photoperiodic Control of Seasonal Growth

BACKGROUND Photoperiodic control of development plays a key role in adaptation of plants to seasonal changes. A signaling module consisting of CONSTANS (CO) and FLOWERING LOCUS T (FT) mediates in photoperiodic control of a variety of developmental transitions (e.g., flowering, tuberization, and seasonal growth cessation in trees). How this conserved CO/FT module can mediate in the photoperiodic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 170 1  شماره 

صفحات  -

تاریخ انتشار 2016